

Infiltration Evaluation Approach "Dry" Cover System Net Radiation Heat Components Wind Precipitation Water Storage - Fine grained (i.e., silty **Transpiration** loam) soil providing high soil suction **Evaporation** capacity Runoff Capillary Break -Contrasting fine over Liquid Water Water Heat Vapor coarse material Heat Flow keeps water in water storage component Subtitle C Barrier and lateral drainage provide redundant protection *Node location for evaluating flow through the cover (observation node)

Infiltration Evaluation Approach "Dry" Cover System

*Node location for evaluating flow through the cover (observation node)

Model Software:

Soil Cover[™] Computer Program - University of Saskatchewan

- ◆Predicts the exchange of water and energy between the atmosphere and soil surface
- ◆Predicts movement of water within the cover section

Infiltration Evaluation
Climate Data Selection Criteria
Based on Precipitation

- ◆ Average period of record: 1950 to 1994
- ◆ Base Case: Selected 10-year period: 1967 to 1976
- Extreme Case (90th percentile):
 Selected 1957, 1963, 1964, 1968,
 and 1995

Precipitation

- 8.6 inches/year (218 mm/year)
- 9.3 inches/year (236 mm/year)

12.0 inches/year (305 mm/year)

Infiltration Evaluation
Extreme Case Time Period Selection

Infiltration Evaluation

Base Case Time Period Selection

Infiltration Evaluation

November 29
Start of Snow Pack – Freezing Temperatures
No Infiltration

30% Cover Hydrologic Model Infiltration Evaluation

January 30 to February 20
Start of Snow Melt – Above Freezing Temperatures

Total Precipitation = $\left(\frac{\text{Snowmelt}}{\text{Melting period}}\right)$ + (Daily Precipitation)

30% Cover Hydrologic Model Results

Infiltration Evaluation Results

*Noc			
evalu			
	ugh		
(obse			

	Results (Average Annual in Inches)			
Climate Condition	Precipitation	Runoff	Evapo- transpiration	Infiltration
Base Case - 1967-1976	9.33	0.05	9.25	0.015
	(237 mm)	(1.3 mm)	(235 mm)	(0.38 mm)
Extreme Case	13.31	0.00	13.27	0.019 (338
90th Percentile	mm)		(337 mm)	(0.48 mm)

Notes:

- 1. Daily precipitation distributed over 12-hour duration
- 2. Flat surface so conservative
- 3. Poor stand of vegetation
- 4. Extreme climate conditions 4 back-to-back precipitation events
- 5. Selected wet year for beginning of simulation
- 6. Good correlation with INEEL engineered barrier field pilot tests